C | D | |
---|---|---|
c | 1, 1 | 0, 3 |
d | 3, 0 | 2, 2 |
In game theory, Deadlock is a game where the action that is mutually most beneficial is also dominant. (An example payoff matrix for Deadlock is pictured to the right.) This provides a contrast to the Prisoner's Dilemma where the mutually most beneficial action is dominated. This makes Deadlock of rather less interest, since there is no conflict between self-interest and mutual benefit. The game provides some interest, however, since one has some motivation to encourage one's opponent to play a dominated strategy.
C | D | |
---|---|---|
c | a, b | c, d |
d | e, f | g, h |
Any game that satisfies the following two conditions constitutes a Deadlock game: (1) e>g>a>c and (2) d>h>b>f. These conditions require that d and D be dominant. (d, D) be of mutual benefit, and that one prefer one's opponent play c rather than d.
Like the Prisoner's Dilemma, this game has one unique Nash equilibrium: (d, D).